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SUMMARY

The buckling of a simply supported rectangular £lat plate
under combinations of shear and direct stress was investigated by
means of an energy method. The criticel carbinations of stress for
several length-width retios were determined to an accuracy of sbout
1 percent by the use of tenth-order dsterminants in conjunctlion with
a modified metrix iteration method. Curves were drawn which can be
used to obtain the criticel stress combinations for the cass of
interaction of shear and longitudinal direct stress and for the case
of interaction of shear amd transverse direct stress.

INTRCTUCTION

The vproblem of buckling of pletes under the actlon of more tham
one stress has been given considerable attention. For plates
subjected to two stresses the critical cambinations sre usually given
by means of interaction curves, that is, curves that camn be used to
obtaln the velue of one stress required to produce buckling when a
given value of another stress is also present. The stresses are
ordinarily given nondimensionally In tsrme of elther stress ratios
or stress coecfficients.

In reference 1 the Iintsraction curve for infinitely long flat
plates under combined shear and longitudinal dirsct stress was
shown to be very nearly a parabola as indicated in figure 1 of the

present vaper. In this figure RS is the ratio of shear stress

vresent to the critical stress in pure shear &and R, is the ratio

of the longitudinal direct stress present to the critlcal stress
in pure longitudinel compression. (All symbols are defined in
appendix A.) This curve is shown in figure 1 of reference 1 to
avvly to plates having edges either simply supported, clamped, or
elastically restrained against rotation. Reference 2 demonstrates
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that the varabola also appliss, to a high degree of accuracy, o
nearly square plates with simply supported edges. On the other
hand, for infinitely long plates loaded in shear and transverse
direct stress, the interaction curve assumes a different form,
which 1s shown for simply supported edges in figure 2 taken from
figure 3, reference 3. The form of the interaction curve for shear
end transverse direct stress appears, therefore, to chenge markedly
as the length-width ratio of the plate increases from 1 10 con
The purpose of the present paper is to Investigate this transition
and, in addition, to determine whether any appreciable change in
the form of the interaction curve for shear and longitudinal stress
occurs as the length-width retio of the plate Increases from 1

to .

RESULTS AND DISCUSSION

The resultes discussed herein arc based on the theoretical
solution presented in appendix B. The numerical results, computed
by means of the matrix iteration method described in appendix C,
are belleved to be accurate to within about 1 percent. Interaction
curves are presented for ths buckling of simply supported plates
having length-width retios in the range of 1 to 4t and subjected to
shear and longitudinel stress and to shear and itransverse stress.

Shear and Longitudinel Stress

The interaction curves for shear and longitudinal direct stress
are showm In figure 3 in terms of stress ratios for simply supported
flat rectangular plates heving length-width ratios of 1, 2, and k.
One of the two curves given for each length-width ratio represents
a buckle pattern that is symmetric sbout the center point of the
plate. The other curve represents & buckle pattern that is anti-
symmetric sbout the center vpoint of the plate. Those parts of the
two curves that are governing parts (the parts that give lower
values of one stress for a given value of the other strees) are
drawn with solid lines. The purpose of presenitlng two curves
instead of only the governing parts of either curve is to indicate
where the cusps occur and to show the abrupt change from a symmetric
to an antisymmetric buckle pattern thet results in these cusps.

For purposes of comparison, points from the parabolae represented
by the following equation for the interaction curve for a length-
width ratio of o

RS2 +Ry =1 (see reference 1)
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are included in each graph in filgurs 3. The curves for the
rectenguler plates do not differ visibly from the parabola; this
close agreement indicates that for shear and longitudinal direct
gtress of simply supported rectangular plates the parabolic
interaction formula is substantially correct.

Shéar end Transverse Stress

The interaction curves in stress-ratio form for shear and .
transverse direct strese for simply supported rectengular plates
having léngth-width ratios of 2, 3, emd 4 are shown in figure k.
The curve for a length-width ratic of 2 is nearly a parabala in
the compression range but deviates considerably from the parebola
in the itension range. The curves for the higher length-width..
ratios deviate comsiderably from a parabola in both compression and
tension and incline toward the curve for infinitely long plates.
In figure 5 the curves of figure 4, together with curves for plates
of length-width ratios of 1 and o, are plotted on the same
gravh. The vertical siraight-line part of the intsrasction curve
for a length-width ratio of o corresponds to buckling of the
plate as an Euler strip. (See refersnce 3.) o

In figure 6 the transition in the form of the interaction
curve as the length-width ratlo of the plate changes from 1 10 o
is shown in terms of buckling stress cosfficients. The assumption
that a long plate is Infinitely long is seen to lead to a conservative
estimate of the buckling stresses; if the length-width ratio is
greater then 4, only a small error is iInvolved in this assumption.

The combinations of stress coefflcients that result in buckling
end the corresponding deflection coefficients are given in teble 1.

CONCLUSIQNS

The results for the critical combinations of diresct stress and
shear of simply supported rectangular flat plates, computed by an
energy method summarized in tables and graphs, show that:

1. For shear end longitudinel direct stress the interactlon
curve for all length-width ratios investigated is gubstantially a
parabola for which the equation in terms of stress ratios is

' 2

RS +Rx=l
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where RS isg the ratio of shear stress present to the critical stress
in pure shear and R, 1is the ratio of longltudinal direct stress

Tresent to the critical stress in pure langitudinal compression.

2. For shear and transverse direct etress, the shape of the
Interaction curve depends on the length-width ratio of the plate.
For square plates the iInteraction curve is very nearly a parabola,
the equatlion for which ls given in the ovreceding paragraph. The
Interaction curve for vplates having a length-width ratio of 2 is
nearly varabolic in- the compression range but is close to the kmown
interaction curve for infinitely long plates in the tension range.
In the range of length-+idth ratio from 2 to 4 the parabolic equatlon
does not hold even in compression; therefore the curves given in
the present paver should be used. At length-width ratios greater
then 4, the interaction curve apnroximates the interaction curve for
a length vidth ratio of .

Langley Memorial Aeronautical Laboratory
Netional Advisory Cammittee for Aercmeutics
Langley Field, Va., November 8, 1946

PN
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APPENDIX A
SYMBOIS
a length of plate
b width of plate; b S a
t thickness of plate
W deflection normel to plate
D flexural stiffness of plats _;__EEE;;_
12(1 - u?) /.

x longltudinal coordinate
y transverse coordinate
B symmetrical matrix
E Young's modulus for material
&m deflection-function coefficlent
[ element of matrix B
?mn diagonal terms in stability determinant
X mth unknown In set X3 5%y e Ty

i,j,m,n,p,q,N integers

Cy arbitrary coefficient

Gy longitudinal compressive stress
Qy transverse compressive stress

T shear stress

Ry longitudinal direct-stress ratio
R transverse direct-stress ratio
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shear-stress ratio

longitudinal compressive-stress coefficlent
trensverse compressive-stress coefficient
shear-stress coefficlent

length-width ratio (a/b)

Poisson's ratio for material

characteristic value of matrix B

ith charecterilstic value of matrix B
columm meatrix with elements Xp,X5,..e¥y

modal column associlated with ith characteristic value

nth approximation to &

qolumn natrix constructed so that sach element is the mean of

the corresponding elements of §(n) and. gcn‘l)

critical (used as subscript)
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APPENDIX B

THEORETTCAT, SOLUTION

Method of Analysis

The problem of the stabllity of finlte rectangular flat plates
wnder combined shear and dirsct stress is solved by use of the
Rayleigh-Ritz method. (Ses reference 4.) The doflection function
is sxpressed exactly by means of a two-dimensional infinite
Fouriler series.  The application of the Rayleigh-Ritz aethod results
in en infinite set of hcmogeneous linsar equations in the infinite
nutber of unknown Fourier coefficients. Solutions of these equations
that give Fourlsr coefficients not all equal to zero exist only for
thosé combinations of shear and direct stress for which the buckled
plats is in neutral equilibrium.

The algebralc equations obtained hereln are equivalent to
the equations used in reference 2. In order to obtaln accurate
results for relatively long plates, however, a method of solution
of thess equeticns different from the method of reference 2 was
employed in the present paper. In reference 2, two sixth-order
determinants {one dsterminant corresponding to a symmetrical and
the other determinant to an antisymmetrical buckle pattern) werse
expanded and the resulting polynomisls were solved for the critical
stress combinations. ' Each solution involved the use of only
six terms in the Fourler expansion of the dsflection fumction. In
the present paper 10 terms were used in the expansion of the deflection
function. The corrssponding set of 10 simultaneous equations was
solved by the matrix interation method (references 4 and 5) modified
in the manner described in asppendix C. This method has the advantages
that, whereas a very accurate solution requiree a great deel of
lebor, a good approximate solution cen be obteined without much
effort, and the Fourier coefficients as well as the buckling loads
can be evaluated. A knowledge of the Fourier coefficients for a
given loading condition 18 used to determins whether the best
cholce of equations was made and also to assist in the choice of the
10 most importent equations for & similar loading condition.

Accufacy of Results
Difficultly is ususlly encountered in evaluating the dlscrepancy

béetween the buckling load determined by an exact solution of the 10
most important eguations and the true value of the buckling load.
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On the aessumption that the use of the 10 most important simultaneous
eguations of the infinite set to find the critical shear stress for

a given compression stress would in all cases result In an error of
not more than a few tenths of 1 percent, the iteration (see appendix C)
was cerried out until the error in the solution of the equations used
was estimated to be less than 0.5 psrcent. The shear-stress
coefficients presented in table 1 of the present paper therefore

are believed to be in error by not more then 1 percent.

Solution

The critical stresses are determined on the basis of the principle
that during buckling the elastic~strain emergy stored in a structure
1s equal to the work done by the applied loads. For the case of a
rectangunlar flat plate under loads applied in the plane of the plate,
this equality becomes, when the coordinate sysiem is that of figure T,

1) L8 ) e [ ()

ST

(equivalent to equation 210, roference 6)

(%) + o (By) + 21% %‘“{' dx dy (B1)

Equation (Bl) can be rewritten in terms of nondimensional stress
coefficients ag follows:

Wopelro 2 2
Jod (B8] 0 (8
SRR SR
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where

2
k =°xh2_§
x . 7D

2
kv=° bet
[ yﬂD

bt
k = T
2] chD

The procedure used in solving equation (B2) involves substituting
for w a function of x eand y that satisfies the edge conditlons
and can be asdjusted so as to closely approximate the buckling con-
figuration. For any case in which the value of w is O at all the
edges, the term with the coefficient -2(1 = ) cen be shown.to
venish (reference 7). A series of terms with erbitrary coefficlents
is used to represent w, and the coefficients are determined by
the Raylelgh-Ritz method. A general form for the deflsction W is

[s0] [0}
S S
= A L mrx nr
W oy n__:lamsin = sin -I_D {B3)

Equation (B2) is solved for the case of buckling under shear and
transverse stress and for the case of buckling under shear and
longitudinal stress.

Shsar and transverse direct sitress.- If the value of kx is

set equal to O and the expression for w is substituted in
equation (B2), the following equation is obtained:
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vhere m T p and n ¥ g are odd numbers.

The coefficient amn must be chosen to meke the value of ks

a minimuws. This procedure results in the set of homogeneous
linsar equations represented by -

3 =,
l:m +pﬁ2> lcyle}+ 321:5[3 P mgl’g = 0
" ne p=l g=1 (m2 - p°) (n? - q°)
(B5)

where

p=%

m=1, 2, 3,..

n=l, 2, 3,--.

and mtp &nd n ¥ q are odd numbers.

Thie set of equations may be divided into two groups which are
indevendent of each other, one group in which m i n " 1s odd
(antis;yrmnetx ic buckling), and ons group in which m + n is even
(symmstric buckling). Ten eguations in 10 unknowns were solved for
each group by the iteration method explained in appendix C.
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m=1,
m=1,
m=2,
m=3,
m=1,

m=2,

11

A representative determinent in terms of the coefficients for
the group of equations in which m £ n is even is

n=l

=

n=1

n=5

N=

n=1

n=l

where

o

822 83 815 8y
4 0 0 8
9 45

-k o 0 8
> T

I L 20 o0
22 3 &3
) -0 8

5% 25
20 0 L 4o

6 By
o .8 _k I,

To5 27 tol
3 0 o 12
25 35
0 8 8 0
7 63
-20 0 -8
63 63
6 6 o
35 27
2
= T (m_2 + neﬁe
32k B3

333 &ha
0 8
45
o .8
25
36 0
25
0 8
7
o _8
63
0
35
S
33 35
2 L
35 42
0 _ko
27
Wk o
ko

2y

16
225

16
35

.0

16
35

16

— S

27
0

1l
49

(B6)
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A typlcal determinent In terms of the coefflcients for the
group of equations in which m+t+ n is odd is

m=h, n=

m=2, n=

n=k

=

n=2

810 8oy
I h
o
. 5
b
5 21
o _8
b5
b
5
o b
5
.8 o
L5
20 0
63
o 8.
25
8 o
25
0 20
63

81k

823

=

o}

Sk
7

83

o

O \JF

8 825
_8 20
s 63
0 0
.16 Lo
225 21
0 0
.8 .k
7 7
Ly, ©
0 L25
.16 .8
33
0_ 0
k0 100
27 Wi

L00 -

Lhy

1 .
Wi

b

In general, the method 1ls ito choose numerical values of B
and solve for the lowest

end k&,

value of

set each determlnant equal to O,

ks .

The lower of the two values of kg

found from the

two determinants esteblishes the srltical shear stress for a panel
with length-width ratio B under the transverse stress glven by k&.

(87)
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Sheer snd longltudinal direct stress.- If k& is set squal
to O 1in equation (B2) and the same procedure as’the procedurs
for the combination of shear and transverse stress is carried out,
the set of homogeneous limnsar equations given by the Rayleigh-Ritz
method 1s representsed by

N I ==t -S——
w2 ool gel T (@ - pP)(8? - ¢f)
(88)
vhere
m=131,2, 3,...
n=1,2, 3,...

and m t ﬁ end m+ g are odd numbers.

The determinants set up from these equations are the same as the
determinants (B6) snd (B7) for symmetric and antisymmetric buckling,
respectively, except that the diagonal terms are

s |, o
= pid 2 2.2 - 2.2 ¢ -
© 3K.p3 L(m +nB> e B]

In general, the method is to choose numericel valuss of B
and ky, 8ot each determinant equal to O, and solve for the

lowest value of kg« As in the determination of the shear and
trensverse direct stress, the lowest valus of 'k, establishes the

critical shear stress for a panel with length-width ratic B under
the longitudinel streess given by k.
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APPENDIX C
MATRIX ITERATION METHOD

If the matrix iteratien method is used in attempting to solve
the set of simultaneous linear algebraic equations associated with
the buckling of flat plates where shear is present, the conventlonal
iteration process as described .in reference L does not converge.

The reason for this nonconvergence, the modification in the iteration
process used in the present paper to obtain convergence, and the
method of choosing the best finite set of algebralc equations to use
are described in the following parsgraphs.

Conventlonal Iteration Process

The maetrix lteratlon method is described in the present paper

[02]
<— =
g:i.bmnxn Ay : : (c1)

This set of equatione is equivalent to the set of equations (B5)
from which the critical shear stress is dstexrmined if

2 '
xy = gy (12 + 2827 - ipePpt (c2)

(wvhere m is a different. integer for each different combination
of 1 and J),

b o 3283 idpg
(2 - @R - ?) L}iﬁ + 22 - ngQBf] H (Pq)l/2
- (€3)
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(vhere n bears the seme velation to p, g 28 m bears to 1, J),
and :

A= (Ch')

L
ks

Bouations (Cl) cen similarly be shown to be & generalization of
equations (B8).

The problem is to find the highest value of A which permits
nonvenishing solutions to be found for equation (c1). In order to
avoid the use of too meny suffixes, matrix notetion is used, so that
squation (C1) becomes

BE=2AE (c5)
wvhers B is a square matrix eand & 1is a colum vector.

The matrix iteration method {reference 5) consists in taking
some arbltrarily assumed values for the set of valusas for
and in calculating the left-hand side of equation (C3) in order to
obtain an immroved set of values for &. (Division by A is
unnecessary becsuse the solution of homogensous-equations cen be
deternined only to within an arbitrary multiplicative constant.)
These new values are reinserted in the left-hand side of equation (C5)
1o obtain further improvement in the values, and the process 1is
continued wntil the ratios of the components of & are not
eppreciably changed by further lterations. The value of X is then
given as the ratilo of the last value found for & +to the preceding
value.

The basis for this method cen be seen from the following
discussion. According to matrix theory, if the matrix B is
of Nth order, there are N valuss of A satisfying equation (05) .
Let these values be called Ay, Ap, +.¢, Ay Wwith the order so

arrenged that Ikli >!)..2l > vee S P\NI » For each value of Ay there
is & corresponding solution for =x, which may bs called §i. Then

BE; = 2&; (cé)
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Any iﬁifiai'aséﬁméd_sblutidh g(o)__can be expressed In terms
of the N true solutions &,, &p, ..., &y as follows:

£ _

M=
0

g, (o7)
=1 1

e

vhere the values of the coefficilents C, are in general not known.
The result of one iteration, obtained by using equations (C6)
and (C7), 1s seen to be

é(l) 5£(0)

E—- e
= :L.CiBEi
=1

|

N

X __ _
= f‘:‘ cixiéi

The result of n iterations is

(n) N
& =5 cixingi
i=1

The next step is to fadtor out the nth power of Ay, that is,
the largest velue of A: ool _ S

(n) N
g = Xln Clél + 4}—-‘ ci@“j"')ngi (c8)

T
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Equation (C8) shows that as n increases £{?) pecomes more

-

and more nearly & constant times §1’ the rate of convergence

As
depending on the smallness of the ratio 13- (1 =2, 3, see 5 N)u
1
The largest value of X c¢an then be found as
z(=)
AL =
1 n--1
g

Modification for Shear Buckling Problems

In plate buckling problems 1n which shear 1s present, the
¢riticel shear stresses occur. in palrs which are equal in magnitude
but opposlte in sign. For such & problem Ao = ~Aj1, &and equation (c8)

may be wrltten

() _ . nloe . qym N A\
g =M CE + (-1 e v > 0y 3;;) gy (c9)
. =
Equation (C9) implies that unless Cp is by chance equal to O,
no amount of iteration will resull in convergencs.

A simple expedient can be used, however, to produce convergence.
Since equation (C9) shows that as n increases g\®/ oscillates

about the true solutlion (constant times &4), an improved approxi-—

mation can be obtalned by constructing §<n) such that each
component is same kind of mean of the corresponding components of §(n)

(
and §‘n—l). Immediate convergence results fram the use of the

geometric mean (but not from the use of the arithmetic mernn) afiter
one iteration if only two equations of the set for a ractangular plate
in sheax are used. In the present paper, therefore, in which

10 equations were used, the gecmetric mean was employed except when
Fourler coeffiusients of two successive ilterations had opposite signs,
in which case the arithmetic mean was used.

The procedure adopted for obtalning the shear buckling stress
wes to use the matrix iterstion method modified by taking the
gecmetric meen after every two iterations as described in the pre—
ceding paragraph. In addition, by use of a method suggested in
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refersnce 8, en improved velue for Ay was obtained after the
completion of n iterations by mesns of the equation =

é‘n’f

—Gn-

Choice of Equatlons

An-exact solution of the criticel sheer stress for ‘rectangular
plates involves the use of an infinite set of equations in an
infinite number of unknowns. Since attention must be confined to
e finité nuuwber of equations - say, N - the ability to choose the
best N equations for the purpose is very desirable.

A very useful (althcugh not rigorously correct) guide to
the best cholce of the equations to be used may be obtained from a
‘consideration of the accuracy of representation of the buckle
deformation. The use of N equations in N unknowns implles that
the deflection surface 1s being described in terms of N Fourier
components, with the other components assumed squel to. O.

The matrix iteration method yields the Fourier coefficlents as
well as the critical stress coefficisnt. - The values found for thess
Fourier cosfficients (where N was taken to be lO) vere substituted
in the following form:

+n even ‘ : .omTn odu
17 %18
151 %26 &16.1 827
®13 | %eu| %35 - ] s | %36
811 | Opp | B33 | eyl | 812 | 23| 834 | @45
aji u aue..:a§3 . ) &21' .332 ah3 a5h
et e I e R
*n %1 | %7
281
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As & result of this substi‘lm’cion, values were Inserted in the
10 squares corresponding to coefficients assumed not equal to O,
vhersas no values were substltuted for ithe remalning squares.

The absolute values of the coefficlents were observed to
decrease in magnitude in & rather wmiform menner as the distance
from the largsst coefficient incrsased. If a space in which no
value was substituted occurs 1n one of the foregoing forms in a
region where the nelghboring computed coefficients are not small,
appreciable error is ususlly incurred by the nsglect of that term.
In such cases, the buckling strese was recomputed with the coefficlent
in that space included and the smallest coefficlent dropped from
consideration.
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TABLE 1

STRESS CCEFFICIENTS AND DEFLECTION-FUNOTIOR COEFFICIENIS

Bhear and longltudingl direct stress
% =1
ooe?gigisntl Dorleotion-run:t:o? ::;;ricientlnij
a [

e [2H T f31 ] M3 22 | %31 | M5 | %o | "33 | Mo 51 | ®35
4 o ' 7.05 1 o o o 0 o ) o o o
3 | hes| s42| 1 }-.023|.143 |-.,007|~.001| ,006 |.009 | .006}-.001] .000
2 |6.62| 9,61} 1 |-.ou1}{.205 |=-.035][-.003| .007 |.019 .006 | -.002 | .003
1 | .11 1 |-.057]|.253 |-.052)-.00%f .c06 |.028 | .oo5|-.003} .00k
o |9.35|11.63| 1 [-.070}.297 |-.071]-. .005 | .038 | .003|-.00% | .005

-2 [11.56 1 |-.091|.360 |-.107]-.006] .002 |.057 |-.003|-.006] .007

-4 |13.86 24,76 | 1 |-.107 |.M17 |-.145]-.007-.002 | .076 |-.011]-.007 | .008

.;_ 2 2
1+ odd .
B2 | %20 | | %23 | P32l %m | %5 | su | w3 | %s2
L B.%9 o 0 1 o 0 o 0 o o 0 0
3 | 8,19 | 3.29 {-.237] 1 |-.003|-.01¢].149 |-.052 [-.001].005 |.007 |.01%
2 |s5.12] .66 |-.195| 1 |-.004|-.035].214 |-.085|-.002}.006 |.015 |.oL%
1 | 5935 5.70{-.231 1 |-.00%]-.053[.265 |-.109|-.003|.006 |.o2t |.o11
i+ ) even
1 [ %3 %2 | "3 | M5 | %2n | %33 | fwe | "s1 | %35
e} 6.59 | 6.61 032 |.343 |-~.325-.002}|.005 |.0Bg |-,o82|-.010 |.0O4
-2 | 7.89 .os2 |.377 f-.2%8 |-.002] .005 |.05¢ |-.036 |-.01% |.006
-4 9.04 | 9.8 052 |.4C7 [ -.269 |-~.003] .003 |.069 | -.034]-.016 |.008
E=t
1+ ) odd
%12 | %21 | %23 | %32 | % | %u3 | %2 | %1 | %2 | %A1
¥ 137 ] o o ] o 0 1 0 0 o 0 o
3.06 | 2.94% |-.020 [-.22% | .00k |-.165] 1 |[-.009 |.148 |-.0%6 |.028 |-.029
i+ ) even
1 -] a3 833 840 251 853 %2 | *n 291
2 |%10 |4.12 |-.069 | .182 | 1 |-.026 |-.252 |~.334 |.019 |.013 [-.028 |-.008
5.00'
o [5.67 }5.77 [-.155 | .209 | 1 |-.ou8 |-.32k4 |-, 032 |.o12 [-.032 |-.010
-4 |7.958 |[8.00|~.315]| .36 | » |-.090 |-.822 |-.292 |.057 |.025 |-.026 i-.010
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TABLE 1
STRESS OOEFFICIENTS ARD DEFLECTION-FUNCTION COFFICIENTS ~ Concluded

Shear and transverse direct streas

=2
Stress Deflection-function cosfficlents aij
eoeffioike:lxtn T+ ] even
LR CNE 81 | M3 | %2 %] M5 *an | Y33 M2 | % | %5
1.56| o |4.70 1 o o 0 o 0 o o o o
1451 1.93 1 -.002| .076 |-.018} .000 | 002 |.003 | .009 | -.001 |{.000
1.3 2,94 1 -.006 .119 |=-.043§ 000 | 003 | .006 | .00 | -.005 |.001
1.0 L.18 1 -.013| .182 |-.102|-.001 | ,004 | .01k | ,005 | -.009 |.001
5 5.65 1 -.023| .e6% |-.201}-,001 | ,005 |.029 |-.012 | -,013 |.002
0 6.59 | 6.61 1 -.032| .343 |-.324]-,002 | .006 | .O47 {~.043 | -.010 |.0O4

1+ ) odd
82 821 823 ®32 o oL} 243 825 252

a;u
-8 7.76 | 1.52 |~-.270 1 |-.078 |.337 l-.155 |-.005 |.005 | .oko |-.005 |.ooh
-1.5 8.56 | 8.31 |-.264 1 }|-.085 |.36) }-.176 [-.005 | .,o004 | , 048 |-,006 |.o0L

% =3
1+ ) even
_ %1 | %3 | %22 | %3 | 15| ek | *33 ) w2 | %s;1 | 35
.23 o© 3.59 | 1 o 0 0 o o o o o 0
1.1 {2.69 1 -.003] .098 {-.,072| .000 | .002 | .00k | .009 | -.010 [.000
C .9 |80 1 J-.o08| .179 |-.231] .000 | .oon |.ok l.017 | -.009 |.c01
1+ ) odd

%12 | %21 | ®p3 | ®3p | %y | S | B3h | P43 | %25 | %52

.5 |5.21 5.0 .153 1 |-.032{-.279 | -.237] .003 |-.006} .027 | ~-.002 |.OL2
o jé6.04 5.89 .154 i -.041 | -.337|-.333] .003 {-.006] .039 }-.002 |.035
- .5 |6.63 6.60} 147 1 -.048 | -,396 | -, 455 | .003 | ~.007} .054 | -.003 |.069
-1.2 |7.50 7.471 132 1 -.057 { -.487 | -.654 | .003 |-.007) .081 | -.00k [.131
g=14
1 4+ ) even
813 | %13} %22 | %3;1 | et | %33 { M2 | %51 | %2 | "n
1.13| o 1 0 ] ] 0 ] ] 0 0 )
1.05 | 2.61 1 -.002]| -,007 | -.068 [-.002} .002{-,013 |-.02k|-.004 [-.00%

%1 83z | &3 233 L T %53 862 21 853 5

o |5.67 |5.77]-.153 | .209] 1 |-.obg|.32% [-.300|-.012|-.032].032 [-.020
- .5 |6.37 -.088 j~.198| 1 |-.055}.370 |-.382 |-.033 |-.034 | .0k2 [-.012
-1.1 |7.07 | 7.11 |-.027 J-.176| 1 |-.063 }.uu8 |~.578 [-.095 |-.007| .066 |-.010

1+ ) odd
Si2 | B3 | %23 | %3p | %y | %3y | Suy | g2 | fmy | %72

3.99 3.89 |.099 r }.015 |-,208 [-.283 |-,004 |.0th |.009 |-.007 |-.005
4,93 | L.g9 |.102 1 l-.023 |-.299 |-.u62 |-.006 |.030 |.057 |-.005 | .005
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Figure 1.- Interaction curve for an infinitely long flat plate under
combined shear and iongitudinal direct stress in terms of siress
ratios R o and Rx taken from figure 1 of reference 1.
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Figure 2.- Interaction curve for an infinitely long flat plate under
combined shear and transverse direct stress in terms of stress
ratios Ry and Ry from figure 3 of reference 3.
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NACA TN No. 1223 Fig. 3
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Figure 3.- Interaction curves in terms of stress ratios Rg and Ry

for shear and longitudinal direct stress of simply supported
rectangular flat plates having length-width ratios of 1, 2, and 4 and
comparigon with points from the curve representing the parabolic
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Figure 4,- Interaction curves in terms of stress ratios RS and Ry

for shear and transverse direct stress of simply supported
rectangular flat plates having length-width ratios of 2, 3, and 4.
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Figure 5.~ Transition in the form of interaction curve for shear and
transverse direct stress for a simply supported rectangular flat
plate as the length-width ratio changes from 1 {0 » in terms of

Rg and Ry. Rg=z— ; Ry =gi— .
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Fig, 7
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Figure 7, - Coordinate system for g rectangular flat Plate,



